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SUMMARY

We apply the lattice Boltzmann (LB) method for solving the shallow water equations with source terms
such as the bed slope and bed friction. Our aim is to use a simple and accurate representation of the
source terms in order to simulate practical shallow water flows without relying on upwind discretization or
Riemann problem solvers. We validate the algorithm on problems where analytical solutions are available.
The numerical results are in good agreement with analytical solutions. Furthermore, we test the method on
a practical problem by simulating mean flow in the Strait of Gibraltar. The main focus is to examine the
performance of the LB method for complex geometries with irregular bathymetry. The results demonstrate
its ability to capture the main flow features. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lattice Boltzmann (LB) method, also popularly referred to as LBM, is an alternative numerical
tool for simulating fluid flows [1]. The method is based on statistical physics and models the fluid
flow by tracking the evolution of distribution functions of the fluid particles in discrete phase space.
The essential approach in the LB method lies in the recovery of macroscopic fluid flows from
the microscopic flow behaviour of the particle movement or the mesoscopic evolution of particle
distributions. The basic idea is to replace the nonlinear differential equations of macroscopic
fluid dynamics by a simplified description modelled on the kinetic theory of gases. To obtain
the hydrodynamic behaviour, the Chapman–Enskog expansion which exploits a small mean free
path approximation to describe slowly varying solutions of the underlying kinetic equations is
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undertaken. The method has been proven to be effective for simulating flows in complicated
geometries and implementation on parallel computer architectures [2]. Furthermore, the method
has become an alternative to other numerical methods like finite difference, finite element and
finite volume methods in computational fluid dynamics.

As such the LB method has found a wide range of applications in a variety of fields, which
include numerical simulation of shallow water equations. The LB method has been successfully
adopted to simulate shallow water equations which describe wind-driven ocean circulation [3, 4], to
model three-dimensional planetary geostrophic equations [5], and to study atmospheric circulation
of the northern hemisphere with ideal boundary conditions [6]. In addition, under the influence of
gravity, many free surface flows of a fluid (not necessarily involving water) can be modelled by
the shallow water equations with the assumption that the vertical scale is much smaller than any
typical horizontal scale. These equations can be derived from the depth-averaged incompressible
Navier–Stokes equations and usually they include continuity and momentum equations. Hence, the
applications of shallow water equations include a wide spectrum of phenomena other than water
waves. For instance, the shallow water equations have been applied to environmental and hydraulic
engineering, for example, for tidal flows in an estuary or coastal regions, rivers, reservoir, and
open channel flows. Such practical flow problems are not trivial to simulate since the geometry
can be complex and the topography irregular.

Other computational approaches such as the finite-difference method, the finite-volume method,
or the finite-element method have been applied to simulate the shallow water equations, see [7–11]
among others. For some of these approaches the treatment of bed slopes and friction forces often
causes numerical difficulties in obtaining accurate solutions, see, for example, [7, 11, 12]. As an
alternative, the LB method for shallow water equations has been presented in [3, 13, 14]. Due
to its origin, the LB method has some features that are significantly different from conventional
methods based on direct discretization of the equations. Appealing features of the LB method
include simplicity in programming, parallel implementation, and straightforward incorporation of
complex geometry and irregular topography. Furthermore, the LB method offers several desirable
properties such as linear convection terms and nearest-neighbour stencils. On a structured mesh, the
LB method can be implemented in a two-stage procedure namely, a collision operator evaluation
which involves only local operations, and an advection operation where values are transported to
adjacent lattice points without performing any computations.

In this paper, we mainly present a practical study of the LB method to shallow water problems
on complex geometry and irregular bathymetry. The bathymetry is given either by an analytical
function or by data points in a two-dimensional domain. The aim of this paper is to test the accuracy,
efficiency, and study challenges for the LB approach for such a practical situation. To verify this
approach, the problem of mean flow in the Strait of Gibraltar has been used as a test example. The
results obtained are competitive in comparison with other approaches that solve the macroscopic
equations using direct discretization methods. They are obtained without consideration for well
balancing, or adaptive grids and other technical details as is the case with other approaches. By
well-balanced schemes we mean those methods that require special treatment of the source terms
such that the discretization of the flux gradients is balanced with the one used for the source
terms. For more details on well-balanced schemes for shallow water equations we refer the reader
to [11, 12, 15], while references on adaptive methods for solving shallow water equations can be
found in [16] among others. Our findings inform applied scientists to consider the LB method
as an alternative practical numerical scheme for solving flow problems modelled by the shallow
water equations.
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The paper is organized as follows: in Section 2, we briefly describe the equations of shallow water
flows; the LB method is formulated in Section 3; in Section 4, we examine the performance of the
method for several test examples in one- and two-space dimensions. Conclusions are summarized
in Section 5.

2. THE SHALLOW WATER EQUATIONS

In the current work, we formulate a LB method for the two-dimensional shallow water equations
in the form

�t h + �x (hu1) + �y(hu2) = 0

�t (hu1) + �x

(
hu21 + 1

2
gh2

)
+ �y(hu1u2) = −gh�x Z + ∇ · (h�∇u1) − �u2 − �bu1

�

�t (hu2) + �x (hu1u2) + �y

(
hu22 + 1

2
gh2

)
= −gh�y Z + ∇ · (h�∇u2) + �u1 − �bu2

�

(1)

where u1 and u2 are the depth-averaged flow velocities in the x- and y-directions, respectively, h
the water depth, Z the bed elevation, g the gravitational acceleration, � the water density, � the
Coriolis parameter defined by �= 2� sin�, with � denoting the angular velocity of the Earth and
� is the geographical latitude. Furthermore, � is the kinematic viscosity, and �bu1 and �bu2 denote
the bed shear stress in the x- and y-directions, respectively, defined using the depth-averaged
velocity as

�bu1 = �Cbu1

√
u21 + u22, �bu2 = �Cbu2

√
u21 + u22 (2)

Here, Cb is the bed friction coefficient, which may be either constant or estimated from

Cb = g

C2
z

where Cz = h1/6/nb is the Chezy constant, and nb denotes the Manning coefficient of the bed.
In what follows, bold face types denote vector quantities and u= (u1, u2)T denotes the velocity
field. The shallow water equations (1) have to be solved in a bounded spatial domain with smooth
boundaries endowed with given initial and boundary conditions along with a prescribed bed
elevation. In practice, these conditions are problem dependent and their discussion is postponed
until Section 4 where numerical examples are discussed.

The treatment of topography and friction source terms is of major importance in many practical
applications of shallow water models. Computational techniques using finite difference, finite
element and finite-volume methods have been extensively studied in the literature. Furthermore,
various numerical methods developed for general systems of hyperbolic conservation laws have
been applied to the shallow water equations. For instance, most shock-capturing finite-volume
schemes for shallow water equations are based on approximate Riemann solvers which were
originally designed for hyperbolic systems without accounting for source terms such as bed slopes
and friction losses. Therefore, most of these schemes suffer from numerical instability and may
produce non-physical oscillations mainly because dicretizations of the flux and source terms are
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not well balanced in their reconstruction. The well-established Roe scheme [17] has been modified
in [7] to treat source terms. This method was improved in [12] for general one-dimensional channel
flows. However, for practical applications, this method may become computationally demanding
due to its treatment of source terms. A Riemann solver inside a cell for balancing the source terms
and the flux gradients has been proposed in [11]. However, the extension of this scheme to two-
dimensional complex problems is not trivial. The performance of discontinuous Galerkin methods
has been examined in [15] for some test examples on shallow water flows. A central-upwind
scheme using the surface elevation instead of the water depth has been used in [18]. The ENO
and WENO schemes have been extended in [19] to the one-dimensional shallow water equations.
Numerical methods based on kinetic reconstructions have been studied in [20] for one-dimensional
problems. In the framework of kinetic schemes, a class of relaxation methods has been proposed in
[21]. Most of these methods require exact or approximate Riemann problem solvers, characteristic
decompositions, reconstruction of numerical fluxes, and special discretization of the source terms
which are not easy to implement for two-dimensional problems in complex geometry.

In the current work, we describe the application of an LB method for numerical solution
of the two-dimensional shallow water equations. Results presented in this paper demonstrate
reasonable resolution of the proposed method and confirm its capability to provide accurate and
reliable simulations for shallow water type of flows which incorporate complex topography and
friction forces.

3. THE LATTICE BOLTZMANN METHOD

We consider the two-dimensional kinetic equation

� f

�t
+ v · ∇ f = J ( f ) + S (3)

which describes the evolution of a particle density f (x, v, t)with x= (x, y)T ∈ R2 and v= (v1, v2)
T

∈ R2. In (3), v is the microscopic velocity, J is the collision term, and S includes the effect of
external forces. For discrete models in two-space dimensions, we assume

v∈ {c0, c1, . . . , cN−1}
with ci ∈ R2. Here, we consider a D2Q9 square lattice model [22], as sketched in Figure 1, with
velocity vector of particles defined by

c0 =
(
0

0

)
, c1 =

(
1

0

)
, c2 =

(
0

1

)
, c3 =

(−1

0

)
, c4 =

(
0

−1

)

c5 =
(
1

1

)
, c6 =

(−1

1

)
, c7 =

(−1

−1

)
, c8 =

(
1

−1

)

In the discrete case, the v-dependence of the particle distribution f (x, v, t) is uniquely determined
through N functions

fi (x, t) = f (x, ci , t), i = 0, 1, . . . , N − 1
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Figure 1. Links in the D2Q9 lattice Boltzmann method.

The physical variables, the water depth h, and the velocity u, are defined in terms of the distribution
functions as

h(x, t) = ∑
i

fi (x, t), hu= ∑
i
ci fi (x, t) (4)

In most approaches for the LB applications, the collision operator J ( f ) in (3) is typically of
BGK-type [23]

J ( f ) = − 1

�
( f − f eq) (5)

where the parameter �>0 is the relaxation time and f eq is the equilibrium distribution depending
on f via the variables h and u calculated according to (4). For the standard D2Q9 model with
nine velocities applied to the shallow water equations, we have [3, 13]

f eqi =
⎧⎨
⎩
h − f ∗

0 h( 152 gh − 3
2u

2), i = 0,

f ∗
i h( 32gh + 3ci · u + 9

2 (ci · u)2 − 3
2u

2), i = 1, . . . , 8
(6)

with the D2Q9 weight factors

f ∗
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
9 , i = 0

1
9 , i = 1, 2, 3, 4

1
36 , i = 5, 6, 7, 8

(7)

The local equilibrium function satisfies the following conditions:∑
i

f eqi = h,
∑
i
ci f

eq
i = hu,

∑
i
cici f

eq
i = 1

2gh
2I + hu ⊗ u (8)

such that the LB equation approaches the solution of the two-dimensional shallow water equations.
In (8), I denotes the 2× 2 identity matrix.

Hence, applying an explicit discretization of the above kinetic equation (3) with a BGK-type
approximation (5), we obtain the following discrete LB equation:

fi (x + ci , t + 1) − fi (x, t) = − 1

�
( fi − f eqi ) + f ∗

i ci · F(x, t) (9)
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where ci is the velocity vector of a particle on the i th link and F is the force vector

F(x, t) =

⎛
⎜⎜⎝

−gh�x Z − �u2 − �bu1
�

−gh�y Z + �u1 − �bu2
�

⎞
⎟⎟⎠ . (10)

By applying the Chapman–Enskog procedure [3], it can be shown that the solution of the LB
equation with the equilibrium function (6) results in the solution of the shallow water equations
(1) with a LB viscosity �̂ defined as

�̂ = 1
6 (2� − 1) (11)

In the presentation of the method above it is assumed for simplicity that the computational domain
is discretized using a D2Q9 square lattice with unit spacing as shown in Figure 1. To match this
discretization, the original shallow water equations are scaled in such a way that the lattice link is
the reference length �x . The time scale �t should be chosen such that the ratio U/c� 1 is small
enough to define a stable LB scheme. Here, c= �x/�t denotes the velocity along a unit link and
U is the typical velocity of the flow. This lattice viscosity is then related to the kinematic viscosity
in (1) by the relation

� = c2�t �̂ (12)

In summary, the procedure to advance the solution from the time tn to the next time tn+1 can be
carried out in the following steps:

Step 1: Using the water depth and velocity at time tn , compute the equilibrium function f eqi ,
i = 0, 1, . . . , 8, from (6) to (7). Perform the collision step (5) to obtain the distributions fi ,
i = 0, 1, . . . , 8, with an appropriate relaxation time �.

Step 2: Advect the distribution functions according to (9) and impose the corresponding boundary
conditions.

Step 3: Update the water depth and velocity using Equations (4).
Step 4: Change the time tn −→ tn+1, go to Step 1 and repeat until a stopping criterion is fulfilled.

Note that the stopping criterion in Step 4 can be given either by a fixed time for unsteady problems,
or by comparing the deviation between two consecutive solutions to test for convergence when
simulating steady problems. Note that, although we have restricted our study to the D2Q9 square
lattice, the presented LB method can also use the well-known seven-speed hexagonal lattice. The
implementation of the LBmethod for this type of lattices can be carried out using similar formalism.

3.1. Boundary conditions

Boundary conditions play an important role in the LB method since they can influence the accuracy
and stability of the LB method, compare [24, 25] for more discussions. When no-slip boundary
conditions are imposed at walls the bounce-back rule is usually used in the LB algorithm. At
a boundary point xb, populations fi of links ci which intersect the boundary and point out of
the fluid domain are simply reflected (bounce-back) since they cannot participate in the normal
propagation step

fi∗(xb, t + 1) = fi (xb, t), ci∗ = − ci

We use no-slip boundary conditions also for the coastlines in the Strait of Gibraltar (see
Section 4.3).
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Boundary conditions in LB methods can also be realized by employing extrapolation rules
using the equilibrium distribution. For the numerical examples considered in the present study,
flow boundary conditions for the height, h, and/or the velocities, (u1, u2), are needed at the inlet
and the outlet of computational domains. When the height hl is prescribed at the left boundary,
the three distributions f1, f5, and f8 are unknown. We use the techniques described in [14, 24]
for flat interfaces to implement these boundary conditions in the framework of the LB method.

Assuming that u2 = 0, the velocity in x-direction can be recovered from the relation

hlu1 = hl − ( f0 + f2 + f4 + 2( f3 + f6 + f7))

and we define the unknown distributions as

f1 = f3 + 2
3hlu1

f5 = f7 − 1
2 ( f2 − f4) + 1

6hlu1

f8 = f6 + 1
2 ( f2 − f4) + 1

6hlu1

(13)

This method can also be used when the discharge q1 = hu1 is given since only the product of h
and u1 appears in Equations (13).

In the case of the Strait of Gibraltar we have both a boundary condition for the height and a
Neumann boundary condition for the velocity for an inclined strait inlet and outlet. This class of
boundary conditions is implemented by imposing the equilibrium distribution corresponding to
the prescribed height, hl, and the velocity of the nearest neighbour in the direction of the normal
(u1n, u2n)

fi = f eqi (hl, u1n, u2n), i = 0, 1 . . . , 8

Other types of boundary conditions can also be incorporated. For more details on implementation
of boundary conditions in LB methods, we refer to [24, 25] and further references therein.

4. NUMERICAL RESULTS

In this section, we examine the performance of the LB method in solving some well-established
problems of shallow water flows. Three test examples are selected to check the accuracy and
performance of the proposed LB approach. The first and second examples are one-dimensional
problems with known analytical solutions and, therefore, are used to assess different features of
the LB scheme such as accuracy in smooth regions and resolution in a non-flat topography. In the
third example, we verify the capability of the LB method in a more complex fully two-dimensional
problem. We apply the LB method to the problem of mean flow in the Strait of Gibraltar. In all
the results presented in this section, the gravitational acceleration is fixed to g= 9.81 m/s2.

4.1. Tidal wave flow

First, we consider the problem of a tidal wave flow in a frictionless (Cb = 0) channel with length,
L = 14 km. The bottom is analytically defined by

Z(x)= 10 + 40x

L
+ 10 sin

(
�

(
4x

L
− 1

2

))
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The initial conditions for the water height and velocity are

h(x, 0) = 60.5 − Z(x), u(x, 0)= 0

At the channel inflow and outflow, respectively, we prescribe

h(0, t) = 64.5 − 4 sin

(
�

(
4t

86 400
+ 1

2

))
, u1(L , t) = 0

Following [7], an asymptotic analytical solution for this example can be developed as

h(x, t) = 64.5 − Z(x) − 4 sin

(
�

(
4t

86 400
+ 1

2

))

u1(x, t) = (x − L)�

5400h(x, t)
cos

(
�

(
4t

86 400
+ 1

2

))

This asymptotic analytical solution is used to quantify the results obtained by the LB method. We
define the relative L∞-, L1- and L2-error norms as

‖e‖L∞ = maxi j |eni j |
maxi j |uni j |

, ‖e‖L1 =
∑

i j |eni j |∑
i j |uni j |

, ‖e‖L2 =
√∑

i j |eni j |2√∑
i j |uni j |2

where eni j = uni j − u(xi , y j , tn) is the error between the numerical solution, uni j , and the analytical
solution, u(xi , y j , tn), at time tn and lattice point (xi , y j ). Here, the subscript for the x-direction
has been ignored to avoid overcrowding the variables with subscripts. For the LB method, we used
� = 0.6, c= 200 m/s and the results are displayed at time t = 9117.5 s. For this test example the
ratio is U/c= 0.0009. Note that we used a two-dimensional code to reproduce numerical solutions
for the one-dimensional problem. Therefore, boundary conditions in the y-direction have to be
supplied for the two-dimensional code. For this test example, the dimension in y-direction is fixed
to 50 lattice points. Periodic boundary conditions are assumed on the upper and lower walls.

In Figure 2, we plot the error norms for the velocity solution using four uniform lattices with
sizes �x =�y = 56, 28, 14 and 7 m. Logarithmic scales are used on the x- and y-axes. It is easy
to verify that decreasing the lattice size results in a decrease of all error norms. Similar behaviour
has been observed for the water depth. As expected the LB method shows a first-order accuracy
for this test example. The velocity values corresponding to the considered lattices are plotted along
the analytical solution as shown in Figure 3. Grid convergence is clearly observed in this figure.
Only a small difference between the LB solutions obtained with lattice resolution �x = �y = 7 m
and the asymptotic analytical solution is observed.

Figure 4 presents the numerical and analytical solutions for the free surface at the simulation time
t = 9117.5 s using �x =�y = 7 m. There is an excellent agreement between the numerical results
obtained by the LB method and the asymptotic analytical solution. The LB method performs well
for this unsteady test example and produces accurate solutions without requiring special treatment
of the source terms or complicated upwind discretization of the gradient fluxes as in [7] among
others.
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Figure 2. Grid convergence for the tidal wave flow at time t = 9117.5 s.
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Figure 3. Velocity plots for the tidal wave flow on different meshes at time t = 9117.5 s.
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Figure 4. Numerical and analytical free surface for the tidal wave flow at time t = 9117.5 s.

4.2. Steady flow over a hump

Next, we consider the benchmark problem of steady flow over a hump studied in [12] among
others. The emphasis is to investigate the ability of the LB method to recover the correct steady-
state solution for shallow water flows on non-flat topography. In this test example, the channel
length is 25 m and the bottom topography is defined as

Z(x)=
{
0.2 m − 0.05 m−1 (x − 10 m)2 if 8 m�x�12 m

0 m otherwise
(14)

The initial conditions are given by

h(x, 0) = 2 m − Z(x), u1(x, 0) = 0 m/s (15)

On the channel boundaries we use an inflow boundary condition for the discharge q = hu1 =
4.42 m2/s and an outflow condition for the height h = 2 m.

For this test example, we have observed that the large value of the discharge causes instabilities
which could be controlled by introducing an initialization phase where we continuously increase
the discharge until it reaches its final value. The transition was done over the first half of the
simulation time using a C2(R) (twice continuously differentiable) function as

�(�) =

⎧⎪⎪⎨
⎪⎪⎩
0 if ��0

1 if ��1

�3(10 − 15� + 6�2) otherwise

(16)
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Figure 5. Water free surface for the steady flow over a hump using four different lattices.

Thus, the modified discharge q̃ is set over the course of the simulation

q̃(t) = �

(
t

Tinit

)
q

where the initialization time Tinit = 250 s. The y-dimension of the channel was set to 50 lattice
points. Periodic boundary conditions were imposed on the upper and lower boundary walls. We
used c= 15m/s, � = 1.5 and simulations were stopped at time t = 500s. At this time, the flow had all
the characteristic features of the steady-state solution. In this example, the ratio was U/c= 0.133.

Lattice convergence was also investigated for this test problem. We consider four uniform
lattices with sizes �x = 0.1, 0.05, 0.025 and 0.0125 m. The results obtained for the free surface
are depicted in Figure 5. Significant improvement is observed between the results obtained on
the mesh with �x = 0.1 m and the mesh with �x = 0.0125 m. On the last two finest meshes the
solutions appear to be lattice independent. Thus, the mesh with �x = 0.025 m is considered for
the next simulations of this test example.

Figure 6 shows the free surface along with the bottom profile. The water discharge and the
pointwise errors in the discharge are presented in Figure 7. The LB method reproduces the correct
steady flow and resolves this test problem accurately with small errors in the discharge plot over
the hump area. These errors in the discharge are expected since the correct capturing of the water
discharge is more difficult than the water height in this test case. The results shown here compare
favourably with those published in the literature for the problem of steady flow over a hump, see
for example, [11, 12]. Note that the performance of the LB approach is very attractive since the
computed solutions remain stable and accurate even when coarse lattices are used without solving
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Figure 6. Water free surface and bottom bed for the steady flow over a hump.
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Figure 7. Water discharge (top) and discharge error (bottom) for the steady flow over a hump.
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Riemann problems or reconstructing upwind fluxes or requiring complicated techniques to balance
the source terms and flux gradients as in [11, 12].

4.3. Mean flow in the Strait of Gibraltar

The final application is the problem of mean flow in the Strait of Gibraltar. The schematic
description of the Strait of Gibraltar is given in Figure 8. The system is bounded to the north and
south by the Iberian and African continental forelands, respectively, and to the west and east by
the Atlantic ocean and the Mediterranean sea, respectively. This test problem is chosen because it
presents a true practical test of LB shallow water flow for two major reasons. First, the Strait of
Gibraltar’s domain is a large-scale domain including high gradients of the bathymetry and well-
defined shelf regions. Secondly, the strait contains complex fully two-dimensional flow structures,
which present a challenge in the shallow water modelling. The Strait of Gibraltar has also been the
subject of numerous investigations such as water circulation, hydrodynamic processes and tides,
compare [26–29] among others. In all these references, the simulation domain is restricted by the
Tangier–Barbate axis from the Atlantic ocean and the Ceuta–Algeciras axis from the Mediterranean
sea, see Figure 9. This domain is taken in numerical simulations mainly because measured data are
usually provided by stations located on the above-mentioned cities. Therefore, we have adapted
the same domain for our LB simulations. Our main objective in this numerical example is to test
the capability of the LB method to handle complex geometry and irregular topography.

The bathymetry of the strait is obtained from [27] and it is depicted in Figure 9. In this figure
we show 10 equally spaced bathymetric contourlines. It is evident that the bathymetry is not
smooth and exhibits irregular features with different length scales. For instance, two bumps with
minimum bathymetric values of 997 and 463 m are localized in the vicinity of the eastern exit of
the strait and the Caraminal Sill, respectively. All simulations used a constant Manning coefficient
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Figure 8. Schematic description of the Strait of Gibraltar.
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900

80
0

70
0

600500400

30
0

200300

400

200
100

100

6°05‘ 5°55‘ 5°45‘ 5°35‘ 5°25‘ 5°15‘
35°45‘

35°55‘

36°05‘

36°15‘

Figure 9. Bathymetry contours of the domain under study in the Strait of Gibraltar.

of nb = 0.012 s/m1/3, a Coriolis parameter of �= 8.55× 10−5 s−1, and a typical value for the
horizontal eddy viscosity of � = 100 m2/s known in the literature, see, for example, [27, 29].
A no-slip boundary condition for velocity variables was applied to the coastal boundaries. At the
open boundaries, Neumann boundary conditions are imposed for the velocity, and the water
elevation is prescribed as a periodic function of time using the main semidiurnal and diurnal tides.
The tidal constants at the open boundary lattice nodes were calculated by interpolation from those
measured at the coastal stations Tangier and Barbate on the western end and the coastal stations
Ceuta and Algeciras on the eastern end of the strait. We considered the main semidiurnal M2, S2,
and N2 tidal waves, and the diurnal K1 tidal wave in the Strait of Gibraltar. Hence, at the open
boundaries

h(x, y, t) = h0 + h∗(x, y)ei(�∗t+�∗) (17)

where the wave amplitude h∗(x, y) is obtained by linear interpolation from given data for the
considered tides at the Tangier and Barbate stations for the western open boundary and at the
Ceuta and Algeciras stations for the eastern open boundary. In (17), h0 is the averaged water
elevation set to 3 m in our simulations, and �∗ and �∗ denote angular frequency and phase of
the tide. Characteristic values for these parameters are taken from [27] and for completeness are
listed in Table I. Initially, the flow was at rest and 2 weeks of real time were simulated. At the end
of the simulation time the velocity fields were sampled for each tidal simulation at four different
times t = 0, T/4, T/2 and 3T/4, where T represents the period of the considered tidal wave.

First, we examined the lattice dependence of the solutions. To this end, we ran the LB code
using the M2 tidal conditions on three different meshes with lattice sizes �x = �y = 500, 250 and
125 m. In Figure 10, we show the cross-sections of the water height at mid-width of the strait at
times t = T/4 and 3T/4. It is evident that, for this flow regime, the results obtained on the coarse
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Table I. Tidal waves and reference parameters considered in the present study.

Station Tide h∗ (m) �∗ (rad/s) �∗ (◦)

Tangier M2 0.680 1.4052× 10−4 −67.00
S2 0.250 1.4544× 10−4 −90.00
N2 0.130 1.3788× 10−4 −56.00
K1 0.060 7.2921× 10−5 −80.00

Barbate M2 0.762 1.4052× 10−4 −53.50
S2 0.279 1.4544× 10−4 −77.00
N2 0.160 1.3788× 10−4 −37.00
K1 0.027 7.2921× 10−5 −59.00

Ceuta M2 0.288 1.4052× 10−4 −55.02
S2 0.105 1.4544× 10−4 −76.13
N2 0.071 1.3788× 10−4 −37.38
K1 0.038 7.2921× 10−5 −147.72

Algeciras M2 0.323 1.4052× 10−4 −34.80
S2 0.121 1.4544× 10−4 −65.76
N2 0.075 1.3788× 10−4 −34.96
K1 0.025 7.2921× 10−5 −129.72
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Figure 10. Water height using the M2 tidal wave on different meshes: (a) t = T/4 and (b) t = 3T/4.

lattice of 500m show differences to those obtained on the fine lattice of 125m. These differences
noticeably decrease for the lattice of 250m. For instance, the discrepancies in the maximum water
height on the lattices with sizes 250 and 125m are less than 1.92 and 2.34% at t = T/4 and 3T/4,
respectively. Similar results, not reported here, were obtained for the water velocity and for the
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other tidal waves. Therefore, bearing in mind the relatively small differences on the results from a
lattice with size 125 and 250 m at the expense of rather significant increase in the computational
costs, the lattice with size 250 m was believed to be adequate to obtain reasonable results subject
to minimal lattice effects. Hence, the results presented herein are based on the mesh with lattice
size �x =�y = 250 m.

The computed velocity fields using the parameters of the semidiurnal M2, S2, and N2 tidal waves
are presented in Figures 11–13, respectively. The results for the diurnal K1 tidal wave are presented
in Figure 14. We display the results at four different times using the corresponding time period
of each tide. Once the period is completed, dynamics of the water flow is repeated reproducing
analogous velocity fields. The results show different aspects in the flow generated using tidal
conditions for the semidiurnal M2, S2, and N2 tidal waves and those obtained using the diurnal K1
tidal wave. Using the conditions for the semidiurnal tides, the flow exhibits a recirculating zone
of different magnitudes near the Craminal Sill. At later time, before the period is completed, the
flow generated by semidiurnal M2, S2, and N2 tidal waves changes the direction pointing towards
the Atlantic ocean. This behaviour was not observed in the flow field obtained using conditions
of the diurnal K1 tidal wave. In this latter test case, the flow shows slow dynamics and does not
change the direction during the simulation time. A recirculating flow region is also detected on the
top-eastern exits of the strait near Algeciras. Similar features have also been reported in [26, 27].
The LB shallow water model performs well for this test problem since it does not diffuse the
moving fronts and no spurious oscillations have been observed near steep gradients of the flow
field in the computational domain. It can be clearly seen that the complicated flow structures on the
Caraminal Sill and near Tarifa narrows and Tangier basin are being captured by the LB method.
In addition, the presented results clearly indicate that the method is suitable for the prediction of
mean flow in the Strait of Gibraltar.

(a)

(c) (d)

(b)

Figure 11. Results using the M2 tidal wave: (a) t = 0; (b) t = T/4; (c) t = T/2; and (d) t = 3T/4.
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(a) (b)

(c) (d)

Figure 12. Results using the S2 tidal wave: (a) t = 0; (b) t = T/4; (c) t = T/2; and (d) t = 3T/4.

(a) (b)

(c) (d)

Figure 13. Results using the N2 tidal wave: (a) t = 0; (b) t = T/4; (c) t = T/2; and (d) t = 3T/4.
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(a)

(c) (d)

(b)

Figure 14. Results using the K1 tidal wave: (a) t = 0; (b) t = T/4; (c) t = T/2; and (d) t = 3T/4.

Finally, computational cost, in terms of CPU seconds per time step, is 0.22s for each simulation
using the M2, S2, N2, and K1 tidal waves. Approximately 2× 106 time steps were needed to reach
the real time of 2 weeks in a solution. All the computations were performed on a Pentium IV
2.66 GHz having 1 Gb of RAM. Considering the computational cost and the accuracy achieved,
the LB algorithm can be considered as a competitive alternative to the finite volume methods
widely used in the literature to perform numerical studies on shallow water flows, in terms of both
numerical accuracy and computational cost.

This is an important result when it comes to numerically efficient tools in shallow water
simulations; given that the LB model is significantly simpler than the finite volume or finite
element methods with regard to mathematical details and implementation effort. It should be noted
that the LB method offers significant convenience for practical applications, that it can be easily
incorporated in a shallow water analysis by simply introducing an equilibrium function and forces
describing the mean flow variables and the bathymetric effects. Moreover, since the LB method
is well suited for parallel computing, the CPU time of the scheme can be drastically reduced if
parallel computers are used.

5. CONCLUSIONS

The most common two-dimensional LB method using nine particle speeds arranged on a D2Q9
squared lattice was used to approximate numerical solutions to the shallow water equations. The
model is simple, accurate, easy to implement, and can be used to solve both steady and unsteady
shallow water problems. The method also provides a straightforward treatment of source terms
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without relying on complicated discretization techniques. Other source terms such as wind stresses
or bed shear stresses can naturally be added to the LB equation as force terms without special
treatment. In this paper, our focus is to demonstrate the ability of the LB method to solve practical
shallow water flows on non-flat beds with irregular bathymetry.

The efficiency of the method for predicting shallow water flows was assessed in the benchmark
problems of tidal wave flow and steady flow over a hump. The results clearly indicate that the
method captures the correct flow structures and reproduces results which satisfactorily agree with
those available in the literature for the same test problems. To demonstrate the ability of the LB
method on complex practical shallow water problems, we have applied the method to the mean
flow in the Strait of Gibraltar. The numerical results show correct physics in different test regimes.
The influence of different spatial resolutions on the numerical results has also been discussed.
Refined spatial models in which a larger number of total particles is used in the simulation
can resolve more small-scale effects at the expense of long computational times. Nevertheless,
flows in such complex domains can be computed, providing correct physics without the need
for generating adaptive grids or complicated reconstruction of numerical fluxes using exact or
approximate Riemann solvers. Overall the method shows reasonable accuracy while ensuring the
required properties of the shallow water flows.
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